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Abstract. We study the multi-armed bandit (MAB) problem where
the agent receives a vectorial feedback that encodes many possibly
competing objectives to be optimized. The goal of the agent is to find
a policy, which can optimize these objectives simultaneously in a fair
way. This multi-objective online optimization problem is formalized
by using the Generalized Gini Index (GGI) aggregation function. We
propose two learning algorithms to tackle this task: one is a simple
UCB-style algorithm, the other is a gradient descent-based algorithm
that exploits the convexity of the GGI aggregation function. We test
our algorithms on synthetic data as well as on an electric battery con-
trol problem where the goal is to trade off the use of the different cells
of a battery in order to balance their respective degradation rates.

1 Introduction
The multi-armed bandit (MAB) problem (or bandit problem) refers
to an iterative decision making problem in which an agent repeatedly
chooses among K options, metaphorically corresponding to pulling
one ofK arms of a bandit machine. In each round, the agent receives
a random payoff, which is a reward or a cost that depends on the arm
being selected. The agent’s goal is to optimize an evaluation met-
ric, e.g., the error rate (expected percentage of times a suboptimal
arm is played) or the cumulative regret (difference between the sum
of payoffs obtained and the (expected) payoffs that could have been
obtained by selecting the best arm in each round). In the stochastic
multi-armed bandit setup, the payoffs are assumed to obey fixed dis-
tributions that can vary with the arms but do not change with time.
To achieve the desired goal, the agent has to tackle the classical ex-
ploration/exploitation dilemma: It has to properly balance the pulling
of arms that were found to yield low costs in earlier rounds and the
selection of arms that have not yet been tested often enough [1, 2].

The bandit setup has become the standard modeling framework for
many practical applications, such as online advertisement [3], medi-
cal treatment design [4], to name a few. In these tasks, the feedback
is formulated as a single real value. However many real-world on-
line learning problems are rather multi-objective. For example, in
our motivating example, namely an electric battery control problem,
the learner tries to discover a “best” battery controller, which bal-
ances the degradation rates of the battery cells (i.e., components of a
battery), among a set of controllers while facing a stochastic power
demand.

In this paper, we formalize the multi-objective multi-armed bandit
setting in which the feedback received by the agent is in the form
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of a D-dimensional real-valued cost vector. The goal of the learn-
ing agent is to be both efficient, i.e., minimize the cumulative cost
for each objective, and fair, i.e., balance the different objectives. The
“fairness” between the objectives is quantified in terms of General-
ized Gini Index (GGI), which is a well-known inequality measure in
economics [5]. We propose two algorithms that extend two standard
online methods widely used in single-objective optimization prob-
lems. In our synthetic and battery-control experiments we test them
and demonstrate their versatility.

2 Formal setup
The multi-armed or K-armed bandit problem is specified by real-
valued random variables X1, . . . , XK associated, respectively, with
K arms (that we simply identify by the numbers 1, . . . ,K). In each
time step t, the online learner selects one and obtains a random sam-
ple of the corresponding distributions. These samples, which are
called costs, are assumed to be independent of all previous actions
and costs.5 The goal of the learner can be defined in different ways,
such as minimizing the sum of costs over time [2, 1].

In the multi-objective multi-armed bandit (MO-MAB) problem,
costs are not scalar real values, but real vectors. More specifically, a
D-objective K-armed bandit problem (D ≥ 2, K ≥ 2) is specified
by K real-valued multivariate random variables X1, . . . ,XK over
[0, 1]D . Let µk = E[Xk] denote the expected vectorial cost of arm
k where µk = (µk,1, . . . , µk,D). Furthermore, µ denotes the matrix
whose rows are the µk’s.

In each time step the learner can select one of the arms and obtain
a sample, which is a cost vector, from the corresponding distribution.
Sampling an arm is assumed to be independent over time and more-
over independence also holds across the arms, but not necessarily
across the components of cost vectors.

At time step t, kt denotes the index of the arm played by a learner
and X

(t)
kt

= (X
(t)
kt,1

, . . . X
(t)
kt,D

) the resulting payoff. After playing t
time steps, the empirical estimate of the expected cost µk of the kth
arm is

µ̂
(t)
k =

1

Tk(t)

t∑
τ=1

X
(τ)
kτ

1(kτ = k) (1)

where all operations are meant elementwise, Tk(t) is the number of
times the kth arm has been played (i.e., Tk(t) =

∑t
τ=1 1(kτ = k))

and 1(·) is the indicator function.
5 Our setup is motivated by a practical application where feedback is more

natural to formulate in terms of cost. However the stochastic bandit problem
is most often formulated by using the notion of reward, which can be easily
turn into cost by using the transformation x 7→ 1 − x assuming that the
rewards are from [0, 1].



In this study, we shall use the elementwise sample mean as an
estimator of the mean vector. Nevertheless, it is worth to mention
that this estimator is not admissible in general. For example, the
James-Stein estimator [6] always achieves lower least square error
in expectation than the elementwise sample mean given in (1) for
D-dimensional normal distributions where D ≥ 3 and the covari-
ance matrix is diagonal in the form of σI . But to the best of our best
knowledge, there does not exist a James-Stein estimator for such a
general class of multivariate distributions like the class of distribu-
tions with bounded support that we focus on in this study.

3 Multi-objective optimization
In order to complete the MO-MAB setting, we need to introduce the
notion of optimality of the arms. First, we define binary relation �
on RD as follows, for any v,v′ ∈ RD:

v � v′ ⇔ ∀d = 1, . . . , D, vd ≤ v′d . (2)

Let O ⊆ RD be a set of D-dimension real vectors. The Pareto
front of O, denoted O∗, is the set of vectors such that:

v∗ ∈ O∗ ⇔
(
∀v ∈ O,v � v∗ ⇒ v = v∗

)
. (3)

In multiobjective optimization, one usually wants to compute the
Pareto front, or search for a particular element of the Pareto front.
In practice, it may be costly (and even infeasible depending on the
size of the solution space) to determine all the solutions of the Pareto
front. One may then prefer to directly aim for a particular solution
in the Pareto front. This problem is formalized as a mono-objective
optimization problem, using an aggregation function.

An aggregation (or scalarizing) function, which is a non-
decreasing function φ : RD → R, allows every vector to receive
a scalar value to be optimized. The initial multiobjective problem is
then rewritten as follows:

minφ(v) s.t. v ∈ O . (4)

A solution to this problem yields a particular solution on the Pareto
front. Note that if φ is not strictly increasing in every component,
some care is needed to ensure that the solution of (4) is on the Pareto
front.

Different aggregation function can be used depending on the prob-
lem at hand, such as sum, weighted sum, min, max, (augmented)
weighted Chebyshev norm [7], Ordered Weighted Averages (OWA)
[8] or Ordered Weighted Regret (OWR) [9] and its weighted version
[10]. In this study, we focus on the Generalized Gini Index (GGI) [5],
which is a special case of OWA.

4 Generalized Gini Index
The Generalized Gini Index (GGI) [5] is defined as

G(x;w) =

D∑
d=1

wdx
↓
d

where x↓ = (x↓1, · · · , x
↓
D) contains the components of vector x that

are sorted in a decreasing order and weights wi’s are non-increasing,
i.e., w1 ≥ w2 ≥ . . . ≥ wD . It is well-known that GGI is convex in
x as it can be written as the maximum of linear functions.

GGI was originally introduced for quantifying the inequality of
the welfare based on incomes. As an instance of Weighted Average

Ordered Sample statistics, it has also been investigated in statistics
[11]. The Weighted Average Ordered Sample statistics, also known
as OWA [8], do not require that weights are non-increasing and are
therefore not necessarily convex.

GGI has been characterized by Weymark [5]. It encodes both ef-
ficiency as it is monotone with Pareto dominance and fairness as it
is non-increasing with Pigou-Dalton transfers [12, 13]. Informally,
in our setting, a Pigou-Dalton transfer amounts to increasing an ob-
jective while decreasing another objective by the same quantity such
that the order between the two objectives is not reversed. The effect
of such a transfer is to balance a cost vector. Formally, GGI satisfies
the following property: ∀x such that xi < xj ,

∀ε ∈ (0, xj − xi), G(x+ εei − εej ,w) ≤ G(x,w)

where ei and ej are two vectors of the canonical basis. As a conse-
quence, among vectors of equal sum, the best cost vector (w.r.t GGI)
is the one with equal values in all objectives.

From now on, to simplify the presentation, we focus on GGI
with strictly decreasing weights in [0, 1]D , i.e., d < d′ implies
wd > wd′ . This means that GGI is strictly decreasing with Pigou-
Dalton transfers. We also introduce a few notations. For a given
n ∈ N, [n] denote the set {1, 2, . . . , n}. Let w′ be the vector de-
fined by ∀d ∈ [D], w′d = wd − wd+1 with wD+1 = 0. Note that
all the components of w′ are positive as we assume that those of w
are strictly decreasing. Ogryczak and Sliwinski [14] showed that the
GGI value of a vector x can be obtained by solving a linear program.
We shall recall their results and define the linear program-based for-
mulation of GGI.

Proposition 1. The GGI score G(x;w) of vector x is the optimal
value of the following linear program

minimize
D∑
d=1

w′d

(
drd +

D∑
j=1

bj,d

)
subject to rd + bj,d ≥ xj ∀j, d ∈ [D]

bj,d ≥ 0 ∀j, d ∈ [D]

Proof : The proof uses the Lorenz transform L : RD → RD which
is defined as

L(x) =

(
x↓1, x

↓
1 + x↓2, · · · ,

D∑
j=1

x↓j

)
,

and its dth component is denoted by Ld(x). Then the GGI can be
written as

G(x;w) =

D∑
d=1

wdx
↓
d

=

D∑
d=1

wd(Ld(x)− Ld−1(x))

=

D∑
d=1

(wd − wd+1)Ld(x)

=

D∑
d=1

w′dLd(x) (5)

where we assume that L0(x) = 0.



For a given d ∈ [D], Ld(x) can also be thought of as the optimal
solution of the linear program Pd:

maximize
D∑
j=1

yjxj (= Ld(x))

subject to
D∑
j=1

yj = d

yj ∈ [0, 1]

(6)

To see this, first note that y1, . . . , yD represent decision variables.
Thus in principle they should be in {0, 1}, i.e., yj = 1 for an optimal
solution means that the jth component of x is among the d biggest
values of x. A simple argument by contradiction shows that optimal
solutions are attained at extreme points of [0, 1]D .

The dual Dd of the above problem Pd is:

minimize drd +

D∑
j=1

bj,d (= Ld(x))

subject to rd + bj,d ≥ xj ∀j ∈ [D]
bj,d ≥ 0 ∀j ∈ [D]

(7)

According to the strong duality theorem, its optimal solution equals
to the optimal solution of the primal problem, which isLd(x) by con-
struction. This, together with Equation (5) yields the proposition’s
claim.

Interestingly, when realizable solution x belongs to a polytope,
using the linear programs of (7) leads to formulate a simple linear
program to solve, which consists in adding the polytope constraints
to the linear program of Proposition 1. However, the matter is not
as simple if one were to use the linear programs of (6). First, the
optimization of GGI and that of (7) are in opposite direction. Second,
the resulting optimization program would be quadratic.

5 Optimal policy
In the mono-objective case, the arms are compared in terms of their
means, which induces a ranking over the arms, and thus the notion
of the best arm is also well-defined. In the multi-objective setting,
we make use of the notion of the GGI criterion to compare arms.
One can compute the GGI score of each arm k as G(µk;w) if its
vectorial mean µk is known. Then the optimal arm is the one that
minimizes the GGI score, i.e.,

k∗ = argmin
k∈[K]

G(µk;w) .

Since the GGI operator is convex, G(µk;w) = G(E[Xk];w) ≤
E[G(Xk;w)] by Jensen’s inequality.

We are going to deal with mixed strategies, which can be defined
as A = {α ∈ RK |

∑K
k=1 αk = 1 ∧ 0 � α}, because they may al-

low to reach lower GGI values than any fixed arm. A policy, which is
parameterized by α chooses arm k with probability αk. The optimal
mixed policy can be computed as

α∗ = argmin
α∈A

G

(
K∑
k=1

αkµk;w

)
. (8)

In general, G
(∑K

k=1 α
∗
kµk;w

)
≤ G(µk∗ ;w), therefore using

mixed strategies is justified in our setting. Recalling Proposition 1,

it is clear that solving the following linear program

minimize
D∑
d=1

w′d

(
drd +

D∑
j=1

bj,d

)

subject to rd + bj,d ≥
K∑
k=1

αkµk,j ∀j, d ∈ [D]

αT1 = 1
α ≥ 0
bj,d ≥ 0 ∀j, d ∈ [D]

(9)

amounts to solving (8).

6 Regret
After playing T time steps, the average cost of this learner can be
written as

X(T ) =
1

T

T∑
t=1

X
(t)
kt

.

Our goal is to minimize the GGI index of this term. Accordingly
we expect the learner to collect costs so as their average in terms
of GGI, that is, G

(
X(T );w

)
should be as small as possible. As

shown in the previous section, for a given bandit instance with
arm means µ = (µ1, . . . ,µK)ᵀ, the optimal policy α∗ achieves

G
(∑K

k=1 α
∗
kµk;w

)
= G (α∗ᵀµ;w) if the randomness of the

costs are not taken into account. We consider the performance of
the optimal policy as a reference value, and define the regret of the
learner as the difference of the GGI of its average cost and the GGI
of the optimal policy:

R(T ) = G
(
X(T );w

)
−G (α∗ᵀµ;w) .

Note that the GGI is a continuous function, therefore if the learner
follows a policy α(T ) that is “approaching” to α∗ as T → ∞, then
the regret is vanishing. In this paper, we are interested in the expected
regret E

[
R(T )

]
where the expectation is meant with respect to the

randomization of the learner and on the randomness of the costs.

7 Learning algorithms
In this section we propose two algorithms, which can optimize the
regret defined in the previous section. The first one is devised based
on the principle of “optimism in the face of uncertainty” [1], that is,
the algorithm makes its decision based on the optimistic estimate of
the arm means. The second algorithm exploits the convexity of the
GGI operator and formalizes the policy search problem as an online
convex optimization problem, which is solved by a gradient descent
algorithm with projection [15].

7.1 Optimistic algorithm
The principle of “optimism in the face of uncertainty” is very gen-
eral and applies to many bandit problems where the environment is
stochastic. Assume a learner who has already observed costs on var-
ious arms. Based on the observations, the mean of the arm distribu-
tions can be estimated with some precision. Then the learner selects
the next arm based on the optimistic estimates, that is, the best pos-
sible estimates, which is in our setting the high probability lower
confidence bounds.



This principle can be easily adapted to our multi-objective setup
as well. As mentioned before, with the knowledge of the arm means
µ = (µ1, . . . ,µK)ᵀ, the optimal policy can be computed by solving
the linear program given in (9). The idea of our algorithm is to solve
the same linear program but the arm means are replaced by their
optimistic estimates. That is, the learner solves the following linear
program in each time step t:

minimize
D∑
d=1

w′d

(
drd +

D∑
j=1

bj,d

)

subject to rd + bj,d ≥
K∑
k=1

αk
(
µ̂
(t)
k,j − c

(t)
k

)
∀j, d ∈ [D]

αT1 = 1
α ≥ 0
bj,d ≥ 0 ∀j, d ∈ [D]

where µ̂(t)
k =

[
µ̂
(t)
k,j

]
1≤j≤D

is the mean estimate of kth arm based

on the observed costs up to time t and c(t)k is the confidence interval
defined as

c
(t)
k =

√
2 log t

Tk(t)
.

The confidence interval was motivated by the UCB algorithm [1]. We
refer to this algorithm as OPTIMISTIC.

7.2 Gradient descent
The multi-objective regret optimization problem can be viewed as a
convex optimization task, since the GGI function G(x;w) is con-
vex in x. Moreover, with the precise knowledge of the arm means
µ = (µ1, . . . ,µK)ᵀ, one may compute the gradient of G(αᵀµ;w)
with respect ofα, which allows us to apply some online convex opti-
mization technique [16] to tackle this online learning problem. In this
section, we devise an algorithm that is motivated by this observation
and that uses the empirical estimates of the arm means.

We shall make use of a well-known online convex optimization al-
gorithm called ADAGRAD [17] that computes the gradient step in an
adaptive way by scaling the length of the descent step based on the
gradients observed in the previous rounds. In each round, the ADA-
GRAD algorithm first takes a gradient descent step and then project
the new point back to the feasible domain. The domain of our opti-
mization problem is A = {α ∈ RK |

∑K
k=1 αk = 1 ∧ 0 � α},

which is a convex set. First, assume a policy α whose GGI is
G(αᵀµ;w). The gradient of GGI with respect to αi can be com-
puted as

∂G(αᵀµ;w)

∂αk
=

D∑
d=1

wdµk,π(d) . (10)

where π is the permutation that sorts the components ofαᵀµ in a de-
creasing order. Means µk’s are not known but they can be estimated
based on the costs observed so far.

The multi-objective gradient descent algorithm is defined in Algo-
rithm 1, which we shall refer to as MO-ADAGRAD. The algorithm
first pulls each arm at once as an initialization step. Then in each
iteration, it computes an estimate of α(t)ᵀµ, which is the expected
cumulative cost of the current policy α(t) (line 6). This estimate is
used to sort the objectives in a decreasing order, which we need to
compute the gradient estimate of the GGI with respect to the cur-
rent policy α(t) given in (10). As a next step, the algorithms takes

Algorithm 1 MO-ADAGRAD (η)

1: for rounds t = 1→ K do
2: set kt = t and Tkt = 1

3: pull arm kt and observe sample X
(t)
kt

4: Set α(K) = (1/K, · · · , 1/K) andG(K) = 0
5: for rounds t = K + 1,K + 2, . . . do
6: v(t) = α(t)ᵀµ̂(t) . v(t) ≈ α(t)ᵀµ

7: π = argsort
(
v(t)

)
. Permutation for gradient estimate

8: for k = 1→ K do . Compute the gradient estimate
9: g

(t)
k = 0

10: for d = 1→ D do
11: g

(t)
k = g

(t)
k + wdµ̂

(t)

k,π(d)

12: G(t) = G(t−1) + g(t)ᵀg(t) . Gradient step
13: α̂(t) = α(t−1) − ηG(t)−1/2

g(t)

14: α(t) = argminα∈A ‖α− α̂(t)‖
G(t)1/2 . Projection

15: Choose an arm kt according to α(t)

16: Set Tkt = Tkt + 1

17: Pull arm kt, and observe sample X
(t)
kt

the gradient step (line 12) according to the ADAGRAD algorithm and
carries out the projection step where

‖α− α̂(t)‖G =
(
α− α̂(t)

)ᵀ
G
(
α− α̂(t)

)
.

The rationale behind this gradient step and projection is that the
value of the multi-variate function to be optimized might be chang-
ing faster in some directions resulting in larger step concerning this
direction, and the step size, of course, depends on the value of the
gradient. This kind of diversity among the step size of various di-
rections is taken into account in the projection step by scaling the
distance by the inverse of the cumulative gradient G(t)1/2 . Finally,
the MO-ADAGRAD chooses an arm according to α(t) and observes
the vectorial cost.

The algorithm has only one hyperparameter, which is the step size
η. We found this algorithm robust to this hyperparameter, which
might be explained by its adaptive nature. We always set the value
of η to 0.1 in our experiments.

8 Experiments
To test our algorithms, we carried out two sets of experiments. In
the first we generated synthetic data from multi-objective bandit in-
stances with known parameters. In this way, we could compute the
regret defined in Section 6 and, thus investigate the empirical per-
formance of the algorithms. In the second set of experiments, we
run our algorithm on a complex multi-objective online optimization
problem, namely an electric battery control problem.

8.1 Synthetic Experiments
We generated random multi-objective bandit instances for which
each component of the multivariate cost distributions obeys Bernoulli
distribution with various parameters. The parameters of each
Bernoulli distributions are drawn uniformly at random from [0, 1]
independently from each other. The number of arms K was set to
10 and the dimension of the reward distribution was taken from D ∈
{2, 5, 10, 20}. The weight vector w of GGI was set towd = 1/2d−1.
Since the parameters of the bandit instance are known, we could



compute the regret defined in Section 6. We ran the MO-ADAGRAD

and OPTIMISTIC algorithms with 20 repetitions. The multi-objective
bandit instance were regenerated after each run. The regrets of the
two algorithms, which are averaged out over the repetitions, are plot-
ted in Figure 1. The results reveal some general trends. First, the
average regrets of both algorithms converge to zero. Second the OP-
TIMISTIC algorithm outperforms the gradient descent algorithm for
small number of round, typically T < 5000. This fact might be ex-
plained by the fact that the optimistic algorithm solves a linear pro-
gram for estimating α∗ whereas the MO-ADAGRAD minimizes the
same objective but using a gradient descent approach with projec-
tion, which might achieve slower convergence in terms of regret, but
its computational time is significantly decreased compared to the op-
timistic algorithm.
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Figure 1. The regret of the OPTIMISTIC and MO-ADAGRAD. The regret
is averaged over 20 repetitions and plotted in terms of the number of rounds.
The dimension of the arm distributions was set to D ∈ {2, 5, 10, 20}, which

is indicated in the title of the panels.

8.2 Battery control task
Efficient management of electric batteries leads to better perfor-
mance and longer battery life, which is important for instance for
electric vehicles whose range is still limited compared to those with
petrol or diesel engines. An electric battery is composed of sev-
eral cells whose capacity varies extensively due to inconsistencies
in weight and volume of the active material in their individual com-
ponents, different internal resistance and higher temperatures leading
to different aging rates. As a consequence, at any instant, the energy
output is different from each cell, which ultimately results in faster
rates of decay and ultimately leads to the failure of the battery. To ad-
dress this problem, a control strategy called cell balancing is utilized,
which aims at maintaining a constant energy level — mainly state-of-
charge (SOC) — in each cell, while controlling for temperature and
aging. Many cell-balancing controllers can be defined, depending on
the importance given to the three objectives: SOC, temperature and
aging. The values of those objectives should be balanced between
the cells because a balanced use of all cells leads to a long lasting
system. Moreover, those objectives values should also be balanced
within a cell, because for example, a cell can have higher capacity
on a higher temperature, but at the same time it has a higher risk to
explode.

Our battery control task consists in learning and selecting the
“best” cell balancing in an online fashion, so that it can dynamically
adapt to the consumption profile and environment, such as outdoor
temperature. In case of electric cars, this means that the controller
needs to be able to adapt to the driving habits of the driver and to the
terrain, such as hilly roads or desert roads. In this experiment, our
goal was more specifically to test our multi-objective online learning
algorithms in the battery control task, and verify that our online learn-
ing algorithms can indeed find a policy for this control task which
leads to a balanced parameter values of the cells.

The battery is modeled using the internal resistance (Rint) model
[18]. The estimation of SOC is based on the Ampere Hour Count-
ing method [19]. The variation of temperature in the system is de-
termined according to the dissipative heat loss due to the internal
resistance and thermal convection [20]. Cell degradation or aging is
a function of temperature, charging/discharging rates and cumula-
tive charge [21]. Moreover, the battery model is complemented with
10 different cell-balancing controllers. The whole model is imple-
mented in the Matlab/Simulink software package and can emulate
any virtual situation whose electric consumption is described by a
time series, which is given as input to the model. For a chosen con-
troller, the output of the model comprises of the objective values of
each battery cell at the end of the simulation. Note that the output
of the battery model is a multivariate random vector since the power
demand is randomized, therefore this control task can be readily ac-
commodated into our setup. In our experiments, the battery consists
of 4 cells, thus D = 12 in this case. The cell-balancing controllers
correspond to the arms, thus K = 10.

The online learning task consists of selecting among these con-
trollers/arms so that the final objective values are as balanced as pos-
sible. The experiment was carried out as follows: in each iteration,
the learner selects a controller according to its policy, then the battery
model is run with the selected controller by using a random consump-
tion time series. At the end of the simulation, the learner receives the
objective values of each cell output by the battery model as feedback
and updates its policy. The goal of the learner is to find a policy over
the controllers, which leads to a balanced state of cells in terms of
cumulative value.
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Figure 2. The regret of the OPTIMISTIC and MO-ADAGRAD on the
battery control task. The regret is averaged over 10 repetitions and plotted in
terms of the number of rounds. The dimension of the arm distributions was

D = 12.

The results are shown in Figure 2. In this experiments we do not
know the means of the arms, but we estimated them based on 30
runs. These mean estimates were used for computing the optimal
policy and the regret. We run the MO-ADAGRAD and OPTIMISTIC



over 10 repetitions. Their average regret exhibits the same trend like
in the synthetic experiments: the OPTIMISTIC achieved faster con-
vergence. The blue lines shows the regret of the pure policies, which
selects always the same arm, i.e., the performance of single strate-
gies. It is important to mention that the optimal mixed controller has
lower GGI value since the regret of any arm is positive, and more
importantly, the two learners converge to optimal mixed policies in
terms of regret. Note that the regret for larger number of time steps
is slightly negative, which stems from the fact that we estimated the
means of the arms (because their true values are not known).

9 Related work
Multi-armed bandit problems have generated significant theoret-
ical interest, and they have been applied to many real applica-
tions [22, 23]. The single-objective MAB problem has been inten-
sively studied especially in recent years, nevertheless there is only a
very limited number of work concerning the multi-objective setting.
To the best of our best knowledge, Drugan and Nowé [24] considered
first the multi-objective multi-armed problem in a regret optimiza-
tion framework with a stochastic assumption. Their work consists of
extending the UCB algorithm [1] so as to be able to handle multi-
dimensional feedback vectors with the goal of determining all arms
on the Pareto front. Their algorithm makes use of the optimistic es-
timate of the arm means like our algorithm, but it chooses an arm
uniformly at random from the set of arms whose optimistic estimate
is on the Pareto front. Their regret definition is based on the distance
between the mean of the arms and the Pareto front. Therefore con-
trary to our regret notion, their regret does not encode fairness.

Azar et al. [25] investigated a sequential decision making problem
with vectorial feedback. In their setup the agent is allowed to choose
from a finite set of actions and then it observes the vectorial feedback
for each action, thus it is a full information setup whereas our setup
is a bandit information setting because the agent observes only the
feedback corresponding to the chosen arm. Moreover, the feedback
is non-stochastic in their setup, as it is chosen by an adversary. They
propose an algorithm which can handle a general class of aggregation
function, such as the set of bounded domain, continuous, Lipschitz
and quasi-concave functions.

10 Conclusion and future work
We introduced a new problem in the context of multi-objective multi-
armed bandit (MOMAB). Contrary to most previously proposed ap-
proaches in MOMAB, we do not search for the Pareto front, instead
we aim for a fair solution, which is important for instance when each
objective corresponds to the payoff of a different agent. To encode
fairness, we use the well-known generalized Gini index (GGI), a cri-
terion developed in economics. To optimize this criterion, we pro-
posed two algorithms, one based on the principle of “optimisim in
the face of uncertainty” and the other exploiting the convexity of
GGI. We evaluated both algorithms on two domains and obtained
promising experimental results. First, we validated our propositions
on random instances of MOMAB. Then, we tried the two algorithms
on a more realistic task, which is an electric battery control problem.

As future work, a theoretical analysis is needed for the two algo-
rithms we proposed. Indeed, we plan to prove regret bounds for them
and obtain matching lower bounds. Moreover, while we focused in
this paper on the stochastic setting, it would be worthwhile to extend
our work to the adversarial setting. Finally, it would also be interest-
ing to extend this work to the contextual multi-armed bandit and/or

the reinforcement learning setting, which would be useful to solve
the electric battery control problem even more finely.
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